Asymmetric Catalysis

DOI: 10.1002/ange.200705685

Enantioselective Phase-Transfer-Catalyzed Intramolecular Aza-Michael Reaction: Effective Route to Pyrazino-Indole Compounds**

Marco Bandini,* Astrid Eichholzer, Michele Tragni, and Achille Umani-Ronchi*

The preparation of enantiomerically pure compounds has become a stringent requirement for pharmaceutical synthesis.^[1] In this context, asymmetric catalysis is probably the most attractive procedure for the synthesis of active pharmaceutical ingredients (APIs) due to environmental, operational, and economic benefits.

3,4-Dihydropyrazino[1,2-*a*]indol-1(2*H*)-ones Scheme 1) have attracted much attention due to the broad

$$X_{\overline{||}}$$
 $N_{\overline{||}}$
 $N_{\overline{||}}$

Scheme 1. Examples of polycyclic indolyl-based scaffolds. R¹ = alkyl, hydroxyalkyl; R²=H, Me, Bu; X=H, halogen, alkyl; Y=CH, N.

scope of their biological activities (that is, their antifungal properties, noncompetitive antihistamine activity, and specific inhibition of serotonergic receptors).[2] Moreover, recent patents reported the effectiveness of the corresponding 1,2,3,4-tetrahydropyrazino[1,2-a]indoles 2 (Scheme 1) as antiobesity agents and in the treatment and prevention of noninsulin-dependent diabetes.[3]

From these studies, the importance of the absolute configuration of the stereocenters on the pharmacological activity emerged clearly. Moreover, since the piperazine compounds 2 are readily obtainable from 1, [3] the development of an effective stereoselective synthetic route to pyrazino-indol-1-ones 1 would be extremely valuable. The use of chiral pools and the resolution of racemates are the only synthetic routes to 1 and 2 to date. [3-5]

During our ongoing research addressing the functionalization of polycyclic indoles, [6] we recently communicated an efficient Pd-catalyzed approach to tetrahydro-β-carbolines

[*] Dr. M. Bandini, A. Eichholzer, M. Tragni, Prof. A. Umani-Ronchi Dipartimento di Chimica "G. Ciamician"

Università di Bologna

Via Selmi 2, 40126 Bologna (Italy)

Fax: (+39) 051-209-9456

E-mail: marco.bandini@unibo.it

achille.umanironchi@unibo.it

Homepage: http://www.ciam.unibo.it/organica/MarcoBandini/ index(ita).html

[**] Acknowledgements are made to the MIUR (Rome), Consorzio C.I.N.M.P.I.S., and University of Bologna. We kindly thank Dr. Paolo Melchiorre (University of Bologna) for helpful discussions.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

through regio- and enantioselective C3-allylic nucleophilic alkylation (up to 97% ee).[7] Unfortunately, all our attempts to exploit such an approach to perform enantioselective indolyl-N1 ring-closing reactions were unsuccessful. Herein, we describe the first highly enantioselective synthesis of molecular motifs of type 1 through a phase-transfer-catalyzed^[8] aza-Michael addition.^[9]

The employment of a metal-free approach $^{[10]}$ stems from our recent findings on the intramolecular base-catalyzed synthesis of 1, from readily available precursors 3 (Scheme 2).[11] However, the use of Lewis acid catalysis in

Scheme 2. Base-catalyzed synthesis of 1. Bn: benzyl; DMSO: dimethylsulfoxide

the present ring-closing reaction failed, probably due to the poor electrophilic character of the α,β -unsaturated ester and to low catalyst turnover as a result of starting material/ product inhibition (that is, a metallo-poisoning effect exerted by the strongly coordinating amide group).

Searching for an enantioselective variant, we firstly turned our attention to chiral organic bases such as the Cinchona alkaloids and sparteine, which gave disappointing results in the cyclizations of 3a (X = H; toluene, reflux, 48 h, 0% ee). We reasoned that the unsatisfactory stereoinduction could be ascribable to the formation of flexible and not sufficiently tight ion pairs between the ammonium salt of the quinuclidine ring and the nucleophilic indolate intermediate (Figure 1a).

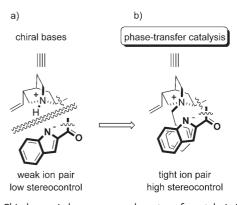


Figure 1. Chiral organic bases versus phase-transfer catalysis in the enantioselective ring closure of 3.

In light of this consideration, we envisioned that the use of more rigid chiral ammonium salts would guarantee higher enantioselection (Figure 1b).

The employment of N-benzylcinchonidinium bromide 4a (10 mol %), in combination with KOH (25 % aq; 0.5 equiv) under a phase-transfer regime, furnished 1a in 84% yield and

with a promising 36% ee (toluene, 30 min, 0°C; Table 1, entry 1). Prompted by this result, we undertook a survey of chiral Cinchona ammonium salts (4b-o) in the cyclization of the model substrate 3a; the corresponding outcomes are summarized in Table 1. Interestingly, the free hydroxy group at the C9 position proved to be crucial to guarantee reasonable ee values. In fact, the use of the C9-O-allyl catalyst 4c gave 1a in nearly racemic form (Table 1, entry 3). The inversion of stereoinduction observed with 4c suggests an

Table 1: Screening of chiral catalysts (Cat*: 4a-o) for the enantioselective ring closure of 3a.[a]

Entry	Cat.*	$R^1/R^2/R^3$	$X^-/Y/Z$	Yield [%] ^[b]	ee [%] ^[c]
1	4a	H/H/H	Br/H/H	84	36
2	4b	OMe/H/H	Cl/H/H	82	21
3	4 c	H/H/H	Cl/H/allyl	85	-5
4	4 d	H/NO ₂ /H	Br/H/H	80	52
5	4 e	H/H/NO ₂	Br/H/H	81	-6
6	4 f	NO ₂ /H/H	Br/H/H	89	60
7	4g	NO ₂ /H/H	Br/OMe/H	75	45
8	4 h	F/F/F	Br/H/H	90	33
9	4i	F/H/H	Br/H/H	89	60
10	4j	CF ₃ /H/H	Br/H/H	90	61
11	4 k	CF ₃ /H/H	Br/OH/H	75	25
12	41	see structure		80	-8
13	4 m	NO ₂ /H/H	Br/OMe/H	85	-30
14	4 n	CF ₃ /H/H	Br/H/H	90	-25
15	4 o	see structure		55	-7
16 ^[d]	4j	CF₃/H/H	Br/H/H	91	72
17 ^[e]	4 j	CF ₃ /H/H	Br/H/H	93	91

[a] All reactions were carried out in open-air vials with reagent-grade toluene and 10 mol% of catalyst (0°C, 16 h, 0.5 equiv of KOH). [b] Yields after isolation by flash chromatography. [c] Determined by HPLC on a chiral stationary phase (DAICEL Chiralcel AD). [d] T = -20 °C. [e] T =

active role for the OH group during the enantiodiscrimination step of the process.^[12] A steady improvement in enantiocontrol was obtained by introducing electron-withdrawing substituents on the benzyl group; these are known to favor tighter contact ion pairing with consequent strengthening of the substrate-catalyst interaction.^[13] In particular, while a para-methoxy group (in 4b) causes a marked drop in enantiocontrol (21 % ee; Table 1, entry 2), the introduction of para-nitro, para-fluoro, and para-CF3 moieties (in 4f, 4i, and 4j, respectively) gave 1a with comparable yields (89- $90\,\%$) and ee values of 60–61 % (Table 1, entries 6, 9, and 10). Mechanistically, the present intramolecular aza-Michael addition seems to work quite differently from most of the described phase-transfer-catalyzed alkylation reactions, in which a templating effect of molecules of water or cations is used to rationalize high levels of stereoinduction.^[14] In fact, in our system, comparable enantiomeric excesses were recorded with several inorganic bases (LiOH, NaOH, and CsOH; solid and in aqueous solution), and the presence of coordinating groups at the *ortho* position of the phenyl ring (in 4e; known to favor rigid catalyst conformations) led to a marked drop in induction (Table 1, entry 5). Remarkably, lowering of the reaction temperature to -20 and -45 °C caused an increase of stereoinduction to 72 and 91%, respectively (Table 1, entries 16 and 17), with no significant variation in the chemical yield (91–93%).

With the optimal reaction conditions established, the substrate scope of the reaction was investigated; the results are summarized in Table 2. Tolerance toward both electronwithdrawing and electron-donating groups on the indolyl scaffold (C5 position) is highlighted by entries 1-4 in Table 2. Under optimal conditions (4j, 10 mol %), the desired pyrazino-indol-1-ones 1b-e were isolated in 85-93 % yield and with enantiomeric excess values of up to 89%. The indolyl esters bearing electron-donating substituents (Me, OMe) at

Table 2: Proof of the generality of the method. [a]

Entry	1	X/Y/Z/R	Yield [%] ^[b]	ee [%] ^[c]	Conf.
1	1Ь	F/H/Bn/Et	93	82	S
2	1 c	Cl/H/Bn/Et	88	84	S
3 ^[d]	1 d	OMe/H/Bn/Et	85	89 (98)	S
4 ^[e]	1 e	Me/H/Bn/Et	85	89 (96)	S
5	1 f	$H/C_6H_5/Bn/Et$	90	75	_
6	1 g	H/β-naphth ^[f] /Bn/Et	55	80	_
7	1ĥ	H/H/PMP ^[f] /Et	75	82	S
8 ^[d]	1i	H/H/Bn/Me	90	90 (92)	S
9 ^[d]	1j	H/H/Bn/tBu	61	53	S

[a] All reactions were carried out in open-air vials with reagent-grade toluene with KOH (25% aq; 0.5 equiv) at -45°C for 16 h, unless otherwise specified. [b] Yields after isolation by flash chromatography. [c] Determined by HPLC on a chiral stationary phase. The values given in brackets are ee values after crystallization (boiling Et₂O for 1d and 1e; cyclohexane for 1i). [d] Reaction time of 48 h. [e] Reaction time of 36 h. [f] Naphth: naphthalene; PMP: para-methoxyphenyl.

3283

Zuschriften

the C5 position (3d and e; Table 2, entries 3 and 4) underwent the cyclization with good stereocontrol but prolonged reaction times were needed to ensure complete conversion (36 and 48 h, respectively). Remarkably, nearly enantiomerically pure compounds can be readily obtained by recrystallization from boiling Et₂O (**3d**, 98% ee; **3e**, 96% ee). 3-Aryl indole derivatives 3f and 3g also smoothly cyclized under the optimal conditions to afford the corresponding functionalized pyrazino-indol-1-ones 1 f and 1g in good yields (90 and 55 %, respectively) and with good enantiomeric excess values (75 and 80%, respectively; Table 2, entries 5 and 6). Limitation on the scope of the reaction lies in the presence of sterically demanding groups (for example, tBu) at the ester moiety. In fact, while methyl ester 1i (yield 90%, 90% ee, 92% ee after crystallization; Table 2, entry 8) confirmed the result obtained with the model substrate 1a (Table 1, entry 17), tert-butyl derivative 3j underwent cyclization with only modest stereodiscrimination (53 % ee; Table 2, entry 9).[15] To the best of our knowledge, only a handful of examples of asymmetric organocatalyzed intramolecular C-N bond-forming processes, through Michael addition, have been described to date.[16]

The absolute configuration of $\mathbf{1a}$ was determined to be S by chemical correlation to the pyrazino-indol-1-one (R)- $\mathbf{5}$ (Scheme 3). In particular, from enantiomerically enriched $\mathbf{1a}$ (88% ee), the saponification of the ester moiety followed by a radical decarboxylation reaction (with Barton's reagent^[17]) of the corresponding acid chloride led to compound (S)- $\mathbf{5}$ with 88% ee in three steps (Scheme 3a). The chemical correlation (specific optical rotation and chiral HPLC retention times; see the Supporting Information) was carried out by exploiting the known multistep approach for the synthesis of pyrazino-indol-1-ones from enantiomerically pure cyclic sulfamidate

Scheme 3. Determination of the absolute configuration of product **1a**. THF: tetrahydrofuran; DMF: *N,N*-dimethylformamide; Boc: *tert*-butoxy-carbonyl; TFA: trifluoroacetic acid.

(S)-7 (Scheme 3b).^[3] The absolute configuration of the polycyclic compounds $\mathbf{1b-e}$ and $\mathbf{1h-j}$ was assigned as S by analogy.

The initial statement concerning the ready interconversion of **1** into 1,2,3,4-tetrahydropyrazino[1,2-a]indoles **2** has been verified by treating (S)-**1a** with an excess of LiAlH₄ (4 equiv) at 0 °C. Under these conditions, the corresponding pyrazino-indole (S)-**2a** was isolated in 92 % yield without any appreciable racemization (91 % ee, Scheme 4).

Scheme 4. Stereoretentive synthesis of pyrazino-indole 2a from pyrazino-indol-1-one 1a.

In conclusion, we have presented a flexible, mild, and highly enantioselective approach to 3,4-dihydropyrazino[1,2-a]indol-1(2H)-ones through phase-transfer catalysis. The ready availability of the acyclic precursors and the broadness of scope make the method a general and useful shortcut for the preparation of a plethora of enantioenriched polycyclic indolyl-based compounds, even for large-scale productions.

Experimental Section

Representative procedure for the synthesis of ${\bf 1a}$: A sample vial was charged with reagent-grade toluene (6 mL), the indolyl ester ${\bf 3a}$ (20 mg, 50 μ mol), and the phase-transfer catalyst ${\bf 4j}$ (3 mg, 5 μ mol). An aqueous solution of KOH (25%, 6 μ L, 0.5 equiv) was added through a syringe, and the mixture was immediately cooled to -45 °C. The reaction was stirred at the same temperature for 16 h, then the solvent was evaporated under reduced pressure. The crude product was directly purified through a pad of silica (cyclohexane/EtOAc 80:20) to give (S)- ${\bf 1a}$ as a white solid in 93% yield and 91% ee (see the Supporting Information).

Received: December 12, 2007 Revised: January 25, 2008 Published online: March 17, 2008

Keywords: asymmetric catalysis · cyclization · indoles · Michael addition · phase-transfer catalysis

- [1] V. Farina, J. T. Reeves, C. H. Sesanayake, J. J. Song, *Chem. Rev.* 2006, 106, 2734–2793.
- [2] a) F. Cafieri, E. Fattorusso, O. Tagliatela-Scafati, J. Nat. Prod.
 1998, 61, 122-125, and references therein; b) K. G. Poullennec,
 D. Romo, J. Am. Chem. Soc. 2003, 125, 6344-6345; c) N.
 Nettekoven, J.-M. Plancher, H. Richter, O. Roche, S. Taylor,
 PCT Int. Appl. WO US 2007/0135416 A1, 2007.
- [3] a) J. M. Bentley, P. Hebeisen, M. Muller, H. Richter, S. Roever, P. Mattei, S. Taylor, PCT Int. Appl. WO 2001–EP8520 20010724, 2002; b) R. K. Tiwari, A. K. Verma, A. K. Chhillar, D. Singh, J. Singh, V. K. Sankar, V. Yadav, G. L. Sharma, R. Chandra, Bioorg. Med. Chem. 2006, 14, 2747–2752.

98% ee

 $[\alpha]_D = +3.6 (c = 1.1, CHCl_3)$

- [4] Analogous approaches were employed for the synthesis of pyrrole-based alkaloids: a) J. Patel, N. Pelloux-Léon, F. Minassian, Y. Vallée, J. Org. Chem. 2005, 70, 9081 – 9084; b) J. Patel, N. Pelloux-Léon, F. Minassian, Y. Vallée, Tetrahedron Lett. 2006, 47, 5561 – 5563.
- [5] B. M. Trost, G. Dong, J. Am. Chem. Soc. 2006, 128, 6054-6055.
- [6] a) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem.
 2004, 116, 560-566; Angew. Chem. Int. Ed. 2004, 43, 550-556;
 b) M. Bandini, A. Melloni, S. Tommasi, A. Umani-Ronchi, Synlett 2005, 1199-1222;
 c) M. Bandini, E. Emer, S. Tommasi, A. Umani-Ronchi, Eur. J. Org. Chem. 2006, 3527-3544, and references therein.
- [7] M. Bandini, A. Melloni, F. Piccinelli, R. Sinisi, S. Tommasi, A. Umani-Ronchi, J. Am. Chem. Soc. 2006, 128, 1424–1425. For a regioselective racemic Pd-catalyzed approach to N1- and C3-allylic alkylation of indoles, see: M. Bandini, A. Melloni, A. Umani-Ronchi, Org. Lett. 2004, 6, 3199–3202.
- [8] a) A. Nelson, Angew. Chem. 1999, 111, 1685-1687; Angew. Chem. Int. Ed. 1999, 38, 1583-1585; b) B. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518-525; c) A. Berkessel, H. Gröger in Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005; d) T. Ooi, K. Maruoka, Aldrichim. Acta 2007, 40, 77-86.
- [9] For recent reviews on enantioselective Michael and hetero-Michael reactions, see: a) L.-W. Xu, C.-G. Xia, Eur. J. Org. Chem. 2005, 633-639; b) J. L. Vicario, D. Badia, L. Carrillo, Synthesis 2007, 2065-2092, and references therein; c) H. Pellissier, Tetrahedron 2007, 63, 9267-9331, and references therein.

- [10] For a review on the synthesis of bioactive molecules through enantioselective organocatalysis, see: R. Marcia de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007, 2575 – 2600.
- [11] M. Bandini, A. Eichholzer, M. Monari, F. Piccinelli, A. Umani-Ronchi, Eur. J. Org. Chem. 2007, 2917 – 2920.
- [12] a) U.-H. Dolling, P. Davis, E. J. J. Grabowski, J. Am. Chem. Soc. 1984, 106, 446–447; b) E. J. Corey, Y. Bo, J. Busch-Petersen, J. Am. Chem. Soc. 1998, 120, 13000–13001.
- [13] For representative examples of the effect of electron-withdrawing groups on chiral phase-transfer catalysts, see: a) S. Jew, M.-S. Yoo, B.-S. Jeong, I. Y. Park, H. Park, Org. Lett. 2002, 4, 4245–4248; b) M. B. Andrus, J. Liu, Z. Ye, J. F. Cannon, Org. Lett. 2005, 7, 3861–3864; c) R. P. Herrera, V. Sgarzani, L. Bernardi, F. Fini, D. Pettersen, A. Ricci, J. Org. Chem. 2006, 71, 9869–9872.
- [14] M. S. Yoo, B.-S. Jeong, J.-H. Lee, S. Jew, Org. Lett. 2005, 7, 1129–1131.
- [15] Under optimal conditions, the pyrrolyl derivatives underwent cyclization with promising enantiomeric excesses (50-63% ee). However, new specific organocatalysts for this class of compounds are under investigation in our laboratory and will be reported in due course.
- [16] a) K. Takasu, S. Maiti, M. Ihara, Heterocycles 2003, 59, 51-54;
 b) S. Fustero, D. Jiménez, J. Moscardó, S. Catalán, C. del Pozo, Org. Lett. 2007, 9, 5283-5286.
- [17] D. H. R. Barton, D. Bridon, I. Fernandaz-Picot, S. Z. Zard, Tetrahedron 1987, 43, 2733 – 2740.

3285